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Abstract. Using the reflection properties of the spherical harmonics of the first kind for 
integer order and complex degree, e(z), it is shown, by taking an appropriate limit. that 
the surface harmonics of the second kind, e ( z ) ,  may be written in the form G(r) = 
f I n ( ~ ) ~ ( z ) + ( ~ ~ - l ) - ~ ~ S : ( z ) ,  where S:(z) is aterminating(generaiired) hypergeometric 
function. This formula is valid for all z not on the real axis between x = *l, this case being 
covered by the usual phase relationships behveea the facton (z + 1) and (1 iz), In particular, 
this formula permits a rapid and very accurate numerical calculation of Qm(z), avoiding both 
the use of the recurrence relations and the necessity of analytic continuation for different 121. 

1. Introduction 

First published in 1785 in his Mimires par divers sauans, the properties of the solutions 
of Legendre’s differential equation 
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have long ago been documented (see, for example, Whittaker and Watson (1935), 
Abramowitz and Stegun (19651, Gradshteyn and Ryzhik (1980). Erd61yi et al (1953)). The 
solutions of this equation are the associated Legendre functions (spherical harmonics) of the 
first and second kind, Pf(z) and Q:(z) respectivelyt. When U and g are both integers and 
z is real E [ - I ,  +I], the solutions are hown  as surface harmonics because of their relation 
to the lines of latitude on the unit circle, z being the cosine of the angle of latitude (that is, 
the polar angle in spherical coordinates). We shall refer to generalized surface harmonics 
when z takes values not in this range, and is in general complex. The spherical harmonics 
and, in particular the surface harmonics, are ubiquitous in mathematical physics, being the 
angular part of the solutions of many of its equations, for example Laplace’s equation and 
the wave equation (see, for example, Morse and Feschbach (1953), Lebedev (1972)). 

The spherical harmonics are closely related to Gauss’ hypergeometric series, indeed 
the hypergeometric differential equation may be reduced to Legendre’s equation (1) in the 
case where the hypergeometric series admits of a quadratic transformation. For this reason 
the spherical harmonics are most elegantly expressed as hypergeometric functions. The 

t In what follows, p and v denote complex numbers and m and n integers. i a mmplex argument and x a real 
one. 
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transformation formulae for the hypergeometric functions may then be used to analytically 
continue the generalized spherical harmonics to cover the entire z plane. Due to the quadratic 
nature of the transformations there are 72 independent such forms (Olbricht 1887). For the 
surface harmonics of the first kind the solution in this form is particularly simple because 
the hypergeometric function terminates after n - m terms, thusi 

(2) 

The equivalent forms for Qr(z) are not so simple since they involve either a limiting process 
or a hypergeometric series which does not terminate. Thus, for Q:(z) given by 

(-4h + 1)t 

while it is true that for U = n the hypergeometric series always terminate and we may lift 
the restriction 11 - z I < 2, clearly p = m requires a limit to be taken. 

Alternatively, in the formula 

e-’PZQ:(z) = ~ $ 2 0  (z’- 1)-”” 

IZI -= 1 (4) 

one of the hypergeometric functions does not terminate and (4) is then necessarily restricted 
to IzI < 1. For lzl > 1 it is then necessary to use either the formula 

or another appropriate analytic continuation of the hypergeometric function to obtain 
sufficiently fast convergence of the infinite series. Thus an algorithm to calculate Qm(z) 
for all possible m, n and z rapidly becomes very complicated and necessarily involves the 
calculation of other special functions, for example the digamma function. 

t We sM1 use the convention that if lhe lower index in the summation i s  greater than the upper one. then the 
sum is m. Thus c ( r )  = 0 form > n as it should be, 
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It is possible, however, to write the Q,"(z) in a form similar to (Z), that is in a way 
which involves only terminating series which are defined for all m and n. Indeed, one only 
has to generate the first few to see that they may be written as 

where S:(z )  is a terminating polynomial of degree n + m - 1 at the most. Surprisingly 
none of the literature gives the analytic form of S:(z)t. This paper supplies this lacuna. A 
further raison d'etre is that (6)  provides a very fast and efficient algorithm for the numerical 
calculation of Gm ( z )  for either a real or a complex argument, in contrast to present algorithms 
which use the recurrence relations (Braithwaite. 1973, Press etal 1992). The drawback of 
this type of algorithm is that upwards recurrance becomes unstable when IzI is large. It then 
becomes necessary to use one of the hypergeometric forms to calculate C ( z )  for some large 
order followed by downwards recurrance to the value required. The difficulty here, as we 
have sought to highlight above, is that this will usually involve summing an infinite series, 
the convergence of which may be very slow. Another problem with such an algorithm 
is that it is inherently neither vectorizable nor parallelizable, that is, the parameters in the 
computer code are loop-dependent and therefore the program cannot be used to calculate a 
large number of Qm(z)'s simultaneously. These difficulties are overcome by using (2) and 
(6). since both q ( z )  and S:(z) require a fixed number of terms in the summations and 
each of these tenns may be calculated independently of all the others$. 

2. Derivation 

In order to derive the form of S:(z) we use the reflection formula for the Legendre 
polynomials of the first kind 

~ : ( - z )  = e"urPf(z) - ze-ifix K sin(n(u + p ) ) ~ ~ ( z )  (7) 
so that the surface harmonics are then given by the limit 

x (-l)nPf(z) - Pf(-z) am(z) = lim 
2 w m  sin(rr(n + p)) 

Clearly a limit does exist since 

so that L'Hapital's rule gives 
F y ( - z )  = (-1yyYz) 

l a  
Q:W = -- [%(Z) + (-1Y''p:(-~)]~=~. 

2 ap 
Using (2) with /L replacing m, we find that 

t Hobson (1931) dws give a formula for g(z) which is similar in form to (6); however, not all the series 
involved terminate and as Y -f n a limit must still be taken. 
$ Other possible numerical methods for calculating am(z) (other than explicitly solving Legendre's differential 
equation (I))  are reshicted to certain values of n and m, for example Christoffel's formula (see below) or 
Neumann's integral representation (Neumann 1881, and gene?alizationh Wrinch 1930, Gonnley 1934). However, 
these methods involve at least one numerical integration and a consequent loss of accuracy over efficiency. 
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so that Q;(z )  is given by (6). with 

and 

R ~ ( z )  = (Z + I)"'(z - 1)'+ (-l)n"+I(~ - I)"'(z + 1)'. (13) 

Clearly R;.  ~) is a terminating polynomial in z .  It is also clear that S;(z) is defined for all 
m and n since for k < m - 1 

= (-l)"+'(m - k - l)! - + k )  lim 
w m  r ( 1 -  /L + k )  

therefore we have the required power series. We can eliminate the digamma function from 
(12) by distinguishing the following two cases. 

Case (1): m > n. In this case k 6 m - 1 for all k ,  therefore using (14) 

We note at this point that it is possible to resum (15) to get the more conventional form of 
Q;(z) (4). Thus, writing (13) as 

RZ = 2(z2 - 1)' z ( m  - k)(i)"'+"cos (s(m + n ) )  

- m + k + l  - m + k + 2  3 

I 
x 9 1 (  , 

- m + k  - m + k + l  1 
+(i)"+"-' sin ( s ( m  + n)> 2 ~ 1  (- 2 '  2 ; - . e z ) }  2' (16) 

then, for example, with n + m = odd, we use 

(17) c-a-b z F ~ ( a ,  b ;  C ;  z ) = ( ~ - z )  ~ F ~ ( c - u ,  C - b ;  C ;  Z) 

and reverse the order of the summations, so that from (15) we find 

The simplification comes because we can use (2) to sum the hypergeometric function in 
(18), that is 

,,,+an-t r (9 +s)r (y + s )  zF1 (-h,  n + 1; 1 - m - 2s; 4) = 2 
r ( m + Z s )  

We can repeat this for m + n = even and, substituting into (15). equation (4) follows. 
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In this case S;(z) has two parts depending on whether or not k < m - 1 Case (2): m < R 
or k > m - 1. Thus 

Given 
" 1  

@(n + 1) = - y  + E- 
S $ = I  

where y is Euler's constant, we then find that 

In this case it is not possible to sum analytically the series in (22) since they are related to 
generalized forms of the hypergeometric function. Thus the first term in is related to a ~ F z ,  
since 

2 k=O k !  
( - M n  + I ) &  - k ) ! Z k  

with r e n, and the second to a limit of the derivative of this with respect to the second 
argument. 

We can now combine the two w e s ,  and the result is 

where by [n, m- 11 we mean the smaller of n and m - 1, and we make use of the convention 
referred to in the second footnote. 

Finally, we note that (23) is not valid for z real E [- 1, +I], and the appropriate formulae 
may be found by applying the usual prescription, namely replace ( z  - 1) by (1 - x ) e ~ ' " ,  
( z z  - 1) by (1 - xz)e*" and (z + 1) by (1 + 2). for z = x + io, thus 

Q ; ( x ) =  ;In (; - -) T ( x ) +  ( -1)yl  -xz)-"z x 
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Hence for a given m and n,  the sums in (23) and (24) are quickly and easily computed and 
thereby the surface harmonics of the second kind. Moreover these sums immediately lend 
themselves to computation in highly vectorized loops. 

As a corollary to (23) and (24) it is clear that, for example, on the cut 

For afficianados of generalized hypergeometric functions we show in the appendix how, 
using Saalshutz's theorem (Slater 1966), equation (25) may be used to prove Christoffel's 
formula, namely 

where [n/2] = n/2, n even, = (n + l)/2, n odd. 
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Appendix 

In this appendix we give a proof of Christoffel's formula using equation (W), that is, we 
are required to prove that 

Suppose n is odd, then let 

where An,2q is some coefficient (dependent only on n and q )  to be determined. Writing 

k k l l  ( 2 2 2  
T [ ( ~ - x ) ~ + ( I + x ) ~ ] = ~ F I  I - 2 ,  - -+- ;  - ; x  
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multiply both sides of (A2) by P&) and integrate over x E [-1,+1]. Using the 
othogonality relationship 

and the result 

we obtain, using Gauss' theorem, 

where L = n - 2q 1, and we have used the fact that 

? F , ( - L ,  L + 4 q + 1 ;  4 q + 2 ;  1 ) = 0  V L .  (A7) 
The double sum on the right-hand-side of (A6) may be evaluated using Saalshutz's theorem 
(Slater 1966), that is 

Thus, taking n = L, a = L+4q + 1, b = 2q+ 1 + x  and c =4q + 2 + x  we have 

If we now take the derivative of (A9) with respect to x and evaluate the result at x = 0 we 
find 

(-L)p(L + 4q + 1)p (-L),(L +4q + 

( L  - 1)!(4q + l)! = -  
( L  +4q + l)! 

where we have used the reflection formula for the digamma function. The second term 
on the left-hand-side of (AlO) may be summed by replacing 4q + 2 by 4q + 2 + x in the 
third argument of the hypergeometric function in (A7). differentiating with respect to x and 
letting x = 0. Then the final result is 

(All) 
(-L),(L +4q + l)p p+2q 1 ( L  - 1)!(4q + l)! 

( L  + 4q + l)! 
c - = - 2  

p=1 (4q +2),p! S*+l 

so that from (A6) we have 

n odd, 4q + 1 
(n  - W ( n  + 2q + 1) 

An,* = -2 

The appropriate result for n even is 

If we now substitute equations (A12) and (A13) into (A2). and sum in the opposite direction, 
equation (Al) follows. QED. 
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